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The Internet has become irreplaceable in the field of education that it grants access to 
everyone with its immense resource. It is simple for educators to record videos of different fields 
of study and post them on their YouTube channels as well as other educational videos website. 
Both teachers and students can benefit from these videos for research purposes and individual 
study. Websites like YouTube, Khan Academy, MIT OpenCourseWare, and many other 
educational websites grant everyone easy access to study from millions of educational videos. 
Several meta-analyses have shown that technology can enhance learning, and multiple studies 
have shown that videos, specifically, can be a highly effective educational tool. However, with 
this exponential growth in the number of educational videos, one can find it overwhelming to find 
a suitable and effective video to study from. The name of our project is called QA Classifier, and 
our purpose is to make a study using online educational video resources. 

As a team of college students, we all have been watching videos to tackle difficult 
problems during our study. Since there are so many educational video resources we can 
access, it sometimes seems inefficient and time-consuming to find the video that we need. It 
seems almost impossible for us to choose from so many educational videos websites and so 
many video websites. A good classification of different topics should be added. The other thing 
that’s always annoying to us is that many educational videos can be as long as one and a half 
hours or more. Traversing through the video to find some specific key points is just challenging 
as finding needles in a haystack. Forwarding the video too fast can easily skip the key points we 
are looking for while forwarding slowly will be too time-consuming and exhausting. These 
problems of using current online educational video resources really lowered our productivity and 
this is the main reason why we want to bring new changes. 

In order to use those online resources in a better way, we plan to build a QA classifier 
that can analyze educational videos and make specific knowledge points much easier to find. 
Our system will bring great benefits to students and those who want to extend their knowledge. 
Finding the right educational video and even specific part in a video will make online learning 
much more efficient and effective than ever before. This system can go even further into 
different fields to extract and classify information from videos. Our system will benefit not only 
students, but also every person in society who wishes to seek knowledge. 

The QA Classifier is a web-application that parses and classifies segments of recorded 
instructional videos. With this system, users may search for spoken keywords and topics within 
uploaded videos using a search bar from our web-interface. Once an instructional video is 
uploaded into the application, the system will then parse its contents and automatically tag 
relevant keywords to certain time frames. The video, the keywords, and time frames associated 
with the keywords within the video are then stored into the database, later to be retrieved when 
users query for the tags associated with that video.  

Like most web-based systems, the QA Classifier may be divided into two parts: the 
database and the web-application. The database container may be further divided into two 
different types of databases, one for storing the actual videos themselves and one for storing 
the metadata associated with them. Our team chose to use the Amazon S3 Standard Storage to 
store the video contents and MongoDB, a NoSQL database, to store metadata about each 
video. The web-application container may also be divided into two parts consisting of the 



 

front-end application and the back-end application, managed by Angular and Flask respectively. 
This division between the front and back-end applications allows our system to mediate the flow 
of data between the users and the databases. Figure 1 shows the generalized system 
architecture of the QA Classifier. 
 

Figure 1: System Architecture I 
 

 
 
Within each container, a number of components are run or supported. The 

web-application container, for example, has video parsing, video classifying, and video 
uploading components in the back-end, while the front-end has components to support the user 
interface (UI) and manage user input data. The database container provides the infrastructure to 
support the components within the back-end application. The details of the components and 
their associated containers are laid out in Figure 2.  

 
Figure 2: System Architecture II 

 

 



 

The overall workflow of our system and the interaction between the containers’ 
components can be understood through the upload and search processes. First, the user 
uploads a video through the UI managed by Angular, the front-end application. The video data 
is then routed to the back end of the application, run by Flask, via the data handler within 
Angular, and follows the arrow labeled “1” within Figure 2. Now in the back-end portion of the 
application, the video data is uploaded into the Amazon S3 database, labeled with arrow “2”. 
Additionally, the video itself is passed onto the video parsing section of the back-end, where the 
audio of the video is extracted and converted to text data. The text data is then passed onto the 
video classification section, where natural language processing is performed to extract key data 
from the full text. The keywords extracted from this text file, along with the time frames 
associated with them, and the link to the original video in the S3 database is then stored into 
MongoDB, following arrow “3”. This completes the upload, parsing, and classifying process. 
Now, if the users query for certain keywords using the search bar within the UI, the search 
words will be sent to the back-end via arrow “1”, and queried within MongoDB. Before sending 
the query data to the back-end, search queries made by the users must first be validated, 
parsed, and packaged appropriately in JSON format. This process is taken care of by the data 
handler component within the front-end application. Then, when the query data is sent to the 
back-end application, all search words are queried in MongoDB. Once the appropriate videos 
containing the search words are found, the time frames and associated keywords are returned 
to the user through arrow “4”. The video itself is also retrieved from the S3 database through 
arrow “5”. Both the video and the video time frames are sent to the front-end, following arrow 
“6”, and put in a list format within the UI. The relevant videos are now available for viewing to 
the users, and this completes the video search portion of our application.  

During the video parsing process, our system extracts audio files from videos and then 
transcribes them into useful text files for later use. Our system uses an API from FFmpeg to 
handle the audio extraction and formatting. The video files uploaded into our system can vary in 
format and encoding, and thus we incorporated the FFmpeg API to handles these 
discrepancies. This API also allows us to output the audio files in a way such that the format is 
standardized (i.e. having the same encoding, sample rate, bits per sample, and the number of 
audio channels). The standardized format we are using is 44.1 kHz with dual audio channels 
encoded in FLAC. To ensure the quality and accuracy of the audio transcription, we are setting 
the output audio files to have high fidelity. Once these standardized audio files are produced, 
our system then takes them to the next step, which is audio transcribing through the Google 
Cloud API. We first need to upload our audio file to the Google Cloud Storage (GCloud) first 
before transcription while the video file itself is being stored in the Amazon S3 database. 
Because the GCloud only allows local file transcription for audio files less than 10 Megabytes, 
we must first store our audio files in the GCloud storage. This will allow us to transcribe audio 
files larger than 10 Megabytes through this API. The GCloud Storage system is not a 
complicated database, but instead a bucket of files. It is fairly easy to access the file with a URL 
link which contains the bucket name and the file name. Our system uses the Speech-to-Text 
API from Google Cloud, currently one of the most powerful neural models on the market, to 
transcribe the audio to text. The features within the API to accurately transcribe proper nouns 
and mark time offsets of words were deemed to significantly benefit our application. With the 
encoding-standardized audio files obtained from using FFmpeg, our system is able to transcribe 
smoothly and output text files. There will be two files produced as a result of this process: one is 
the transcribed text of the whole audio and the other one is a list of every word and its time 
offset with respect to the original video. These two files will be used in the later stages of 
classification and retrieving the time frames of keywords. 



 

In order to let the video parsing portion run automatically when the videos are sent to the 
back-end, we are using a Python script to run our required Python files and the OS library in 
Python to call the system command-line operations. The FFmpeg will be run in the system 
command line as the video file arrived. After the audio file is converted, the system calls a 
Python file that uploads it into our Gcloud storage bucket and gets its URL link back. With the 
URL link, the system then calls another Python file that performs Gcloud Speech-to-Text 
Transcription and passes the URL as the argument. When the audio transcription is finished, 
the two output files will be stored in the MongoDB for classification purposes. 

 
Figure 3: Video Parsing Flow Chart 

 

 
 

The video classification portion of the project will perform an analysis of the transcribed 
files obtained from the video processing and will implement machine learning algorithms such 
as Term Frequency-Inverse Document Frequency (TF-IDF) and topic modeling. As mentioned 
above, two transcribed files will be generated per video. The first transcribed file will provide a 
plain transcription of the content of the video without any time slice information for each word. 
The second transcribed file will provide time slices of all words spoken in the video including the 
time slices in the video in which those words occur. This section of the project first 
pre-processes transcribed files by removing stop words, punctuation, white spaces, then 
performs a lemmatization on each of the words in the text files.  

The next step after text pre-processing is the implementation of TF-IDF. TF-IDF provides 
the relevancy of a word among a set of documents. Therefore, words present in high frequency 
among all documents will receive a lower relevancy weight compared to high-frequency terms 
unique to a document or file. In the QA Classifier, we will use the top five words with the highest 
frequencies per files as video labels. Those words will be stored in a JSON format along with 
the link to the video they appear in, the first time occurrence (timeslices) of those words in 
videos and their weight frequency. We also decided to use a python dictionary to store 
previously defined data on each video because it stores data like a map, are indexed, has key 
values and is changeable. Those are important for our project because it enables us to easily 
store and retrieve data on videos in the MongoDB database, in a JSON format. In the front-end, 



 

of our system, underneath each video, we will provide 5 labels, which consist of the most 
relevant five words of that specific video. By clicking on those labels, the video will start playing 
at the section of the video where the word first occurred. 

In cases when the user searches for keywords not present in our generated labels, in the 
back-end, we implement topic modeling using GenSim on each file and determine the topic 
containing the greatest number of keywords the user searched for. Later, we select labels that 
fall within those topics and return the most relevant labels to the front-end as part of our search 
result. Topic modeling is an unsupervised clustering matching algorithm which matches similar 
words within a file together. Therefore, words that fall under the same cluster or community 
belong to the same topic.  
 

Figure 4: Video Classification Flow Chart 
 

 
 

In our system, the pattern architecture we use is the layered architecture. As shown and 
described above, the developers working on each component or layer only needs to know about 
the layer above and below and each component within the system performs a specific role 
within our system (i.e video classification, video parsing, front-end). In our system, the output of 
one component is the input to another. The implementation of layer architecture in our system 
provides great advantages. This architecture makes it easy to design, develop, test, and assign 
responsibilities among different members of our team. Moreover, significant changes made to 
one component do not necessarily impact the other ones.  

In the planning process of our project, we came up with milestones or different phases 
for our project implementation with specific end dates as shown in the milestones diagram 
below. Each phase is represented by a unique color, and the deadline for each phase is shown. 
Each phase is comprised of development, testing, integration and documentation. Initially, each 
team member worked on his or her individually assigned component. These components were 
integrated into one module to meet the 30% completion deadline. Once all components were 



 

integrated into the main application, our team began the 30% completion testing phase. The 
30% demonstration will showcase communication and interaction of the different portions of our 
system. That is, we will generate our own dataset of videos and audios on different topics, 
which will then be passed on and transcribed into files using the program created by one of our 
team members. The transcribed files will be processed by the natural language processing 
portion and generate 5 tags per video, which will then be stored into a JSON format along with 
term frequencies. The tags as well as the link to videos will be stored in our MongoDB 
database. This will allow the users to query real data processed by our system from the 
web-interface. Thus, majority of the work put into the 30% demonstration will involve transferring 
individual code into the back-end section of the application framework. The 40% completion 
milestone will involve refining the 30% version of our application. For instance, our ability to 
obtain precise data, good quality topic modeling, or valid tags heavily depends on the quality of 
text pre-processing. In the 40% demonstration, we will showcase a refinement of our text 
pre-processing by either implementing lemmatization instead of stemming or a combination of 
both stemming or lemmatization. The 50% will be a refined version of the 40% version, and so 
on and so forth. While the earlier versions of our application will mainly involve integration and 
focus on smooth communication between containers and components, the latter half — the 
50%, 70%, 90%, and 100% — will mostly involve rigorous testing and optimizations for our 
system. Some optimizations to consider for the final stages of development include speeding up 
the upload process, speeding up the transcription process, creating a more friendly and 
aesthetically pleasing UI, and allowing a login system to store user information. A week prior to 
the end of each phase, we test all components integrated together with various data. Also, we 
use GitHub and Trello to keep track and update the projects we work on. On Github and Google 
Drive, we have documented installation steps and lists of required libraries to run specific 
components. Thus, all stages of development include thorough documentation of the changes 
of our evolving system. 
 

Figure 5: Milestones 
 

 
 

 
Component assignments: 

1. Larissa 
a. Natural Language Processing (Video Classification) 

2. Rachell 
a. User Interface 
b. Data Handler 

3. Weiming 
a. Video to Audio Conversion (Video Parsing) 

 


